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A Compact Model for Predicting the Isolation of
Ports in a Closed Rectangular Microchip Package

Hilding M. Olson, Life Member, IEEE

Abstract— This paper presents the derivation of a compact
model for predicting the isolation between ports on opposite
sides of a microchip package such as would be used for MMIC
chips. The model consists of four current sources, two electric,
and two magnetic, representing the port currents and voltages
which excite the modes of a cavity formed by the interior of the
package. The contribution of each mode to the total electric field
is summed, and the average of the total tangential field along the
two probes that project into the cavity at the ports is set equal to
zero. The model, which runs on a PC, is used to compute data for
an actual package, and the data is compared with that produced
by a commercial electromagnetic analysis package running on a
work station.

1. INTRODUCTION

N DESIGNING MICROWAVE packages for MMIC chips

it is very important to avoid signal contamination or signal
feedback at the RF ports. Hence, the signal isolation between
these ports must be kept high. Since it is advantageous to
be able to predict the degree of isolation for a given design,
a method of analyzing the coupling between ports of the
package is needed. This paper describes an analytic method
that satisfies this need and can be implemented on a PC.

These packages with their RF ports often closely resemble
rectangular cavities with probe excitations. Several authors
have analyzed such structures [1]-[3]. The model presented
here serves for the class of package that approximates a
rectangular cavity with shielded microstrip ports in opposite
sides. The microstrip conductor extends into the cavity as
a probe. Although the actual package configuration under
consideration may differ appreciably from a purely rectangular
cavity, this is a geometry that is reasonably simple to analyze
and therefore useful for estimating the package isolation. And
although the ports of the actual package may be different from
shielded microstrip, this geometry also lends itself to simplicity
of analysis. The geometry assumed for the analysis is shown
in Fig. 1.

The approach to the computation of isolation is to take
advantage of the equivalence principle [4] to replace the
electromagnetic fields in the apertures of the ports by fictitious
magnetic currents. These together with the electric currents
flowing on the probes are the sources for the EM field in the
cavity. With assumptions made for the spatial distribution of
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Fig. 1. Geometry of model.

these currents, the amplitudes of the currents are found from
the constraint that the average value of the tangential electric
field along the probes must vanish.

An equation has been derived by Kisliuk [5] for the electric
field inside a rectangular cavity in terms of sources within the
cavity. The actual distribution of electric field in the aperture
at the intersection of the shielded microstrip ports and the
cavity is unknown. However, a reasonable approximation is
to assume that the distribution does not differ much from the
distribution of field over the cross section of a uniform infin-
itely long shielded microstrip line. Similarly, the distribution of
current on the microstrip conductor projecting into the cavity
is unknown. However, it is known to be higher at the edges of
the strip than in the center. A reasonable assumption for the
current distribution is a cosine-squared distribution across the
width of the conductor and sinusoidal along its length. The
latter assumption is widely used in cavity excitation problems
[61, [71.

The unknown quantities to be solved for are the volt-
age on the port #2 microstrip and the currents on the two
microstrip probes for an applied voltage of one volt on
the port #1 microstrip. From these quantities one can then
determine the S-parameters and the two-port insertion and
return losses.
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II. DERIVATION OF ANALYTIC MODEL

The E-field within a rectangular cavity can be expressed in
terms of the cavity modes or eigenvectors and source currents
within the cavity as [3]
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The resonant frequency of mode v is symbolized by w;, and
the applied frequency by w.
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The final term in (1) arises when there are volume current
densities in the cavity. For this model, in the absence of
volume currents, this term is neglected. The TE® and TM?
“electric” eigenvectors, M,(r) and N,(r), respectively, are
given by

R
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and Wyy, and Wy, are normalization constants with
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We can solve for the unknown current source magnitudes
by using (1) to find the 2-component of the electric field along
the probes and setting it equal to zero. To find this component
we need the scalar products of the z-directed probe currents
with the M, and N, eigenvectors. But since M, has no z-
component we do not need to evaluate the integrals J.ps or
Jmx in the first term on the right of (1).

The normalization constant for the N eigenvector is
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Wi, = (k% + k2)abc
andp=0,1,2,3-.-

for m,n=1,2,3-..
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Let the probe currents be
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We have for the probe current coupling factors to the TM
modes
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The magnetic currents flowing over the port aperture regions
have been derived as follows. The potential distribution for the
shielded microstrip geometry can be described by two infinite
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series, ¢o(z, y) for the air dielectric region and ¢1(z, y) for
the solid dielectric region [8], where

—b
do(x, y) = z dy, sinh nr(y = b) cos ¥
n odd a
and
o1z, y) = Z ¢n sinh % cos 2%
a
n odd

the summations being taken over odd values of n only.

The relations between the constants c, and d, are de-
termined by the requirement that ¢g(z, d) = ¢1(z, d) be
satisfied independently by each of the terms of the series.
The value of either constant can be determined by solving the
integral equation for the charge density distribution over the
width of the strip conductor. For this analysis, the assumption
that the charge density is approximated by a cosine-squared
distribution results in the following set of constants
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and ¢, is the relative dielectric constant of the solid dielectric
region.

The electric field is then found from —\_7450 and —\7¢1, and
the magnetic currents covering the lower region (region 1) of
the apertures become
Jmip _ p—1= _Eﬁ
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with d,, = ¢, {sinh (nk,d)/ sinh [nk,(d—b,)]} where z,, and
y, are the coordinates of the aperture and y is 1 for port 1
(2 = ¢) and 2 for port 2 (z = 0). These transform into x and
y, the coordinates of the cavity, as z, = (=)*(z — ), Yo =
y—h,+d
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The “magnetic” eigenvector, F,, is given by
1/(k,)V x N, whence
1
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The aperture current coupling factors then become
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Substituting from (11), (12), and (13) and performing the
integrations yields
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There are four coefficients to be evaluated: Iy, I, V3, and
V2. We specify V; to be 1 volt, leaving three undetermined
coefficients. Three moment equations involving the tangential
electric field on the probes need to be established to provide
a solution for the three unknowns. For the moment equations
we choose the following testing functions

fl@, y, 2) =8(x = 1) 6(y — hi)u(z — c+35)
f2(z, y, 2) =6(z — 12) 6(y — ha)[1 — u(z — ass)]
3(z, v, 2) =6(z — lg) 6(y — ha)[u(z — ass) — u(z — 3)]

where a, is a suitable fraction. Applying these to (1) for the
z-component of electric field will provide three expressions
for the tangential field integrated along the input and output
microstrip probes, which must vanish. Since the only functions
of position will be the eigenfunctions, these are the only
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functions to be integrated. The eigenfunction integrals are
readily evaluated to yield
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The three equations that result from this process are
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where the elements of the A matrix are given by
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and the elements of the B vector are given by
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The total probe current flowing into the input probe is found
by integrating the surface current density I; over the width of
the probe. This yields I7 = I;yw[1 + (¢/2)] sin (kos). Finally,

the S-parameters in terms of I and V, and isolation become

g. 1= Zor It

"I Zoly
2V;

Gy =— 2

1+ Zordr

and

Isolation = —20log So;. (18)

These equations were derived under the assumption that the
ports are in opposite sides of the cavity and that the probes are
terminated in open circuits. If, instead, the ports are in adjacent
sides of the cavity, the coupling between the ports would still
be via the TM cavity modes and a procedure similar to that
above could be used to compute the coupling. If the probes
are terminated in their characteristic impedance, considering
them to be transmission lines, there will be no current reflected
from the tips of the probes. In this case the currents can be
assumed to be uniform in magnitude along the probes. Taking
this into account, (8) can be accordingly altered, and (10) can
be replaced by somewhat different coupling factors for the
electric currents.

III. CAvITY ISOLATION COMPUTATIONS

The analytical method described here has been used to
predict the isolation between ports 1 and 2 for a specific design
of cavity and shielded microstrip ports. The cavity dimensions
used for the computations are the following

a =9.652mm
b =0.889 mm
¢ = 14.859 mm.

The following are the aperture dimensions used

1 =15 =3.175mm
d =h=0254mm
a, =1.321 mm
b, =0.889 mm
w = 0.229 mm.

The microstrip conductors extend into the cavity as probes for
a distance of 1.016 mm.

The computations were programmed into MathSoft’s
MATHCAD software on a 486 PC. Each computation at a
single frequency took about four minutes. The summations
over the mode index v, which comprises the three indexes
m, n, and p, involve triple summations. For the matrix
elements representing the effect of a particular source on
the electric field at the other end of the cavity, e.g., ais, the
series summed over p are alternating. They produce very small
numbers, the computation of which requires a large number
of terms for accuracy and is plagued by round-off errors.
Fortunately these summations can be replaced with closed-
form expressions by the application of partial fractions and
Poisson summation theory [9] or directly from tabulated series
[10]. Appendix A presents the results of these replacements.
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Fig. 2. Predicted frequency-dependence of isolation for a prototype MMIC
package.
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Fig. 2 displays the frequency-dependence of the isolation
computed with the model for the dimensions given above over
a wide range of frequency. The summations were truncated
when m and n reached 50 and 25, respectively. Note that the
isolation slumps off to near zero at about 170 GHz, which is
the lowest of the resonance frequencies for the TM modes.

Figs. 3 and 4 are surface plots, which show how the
frequency-dependence of isolation varies with probe length,
s, and with aperture width, a,, respectively.

IV. COMPARISON OF COMPUTED DATA
WITH DATA FROM OTHER SOURCES

Attempts were made to confirm the predictions of the model
with sample cavities that simulated actual packages. These
consisted of two coaxial lines with SMA connectors soldered
into opposite walls of a short length of X-band waveguide
short-circuited at both ends. The attempts to measure the
isolation between input and output lines with a HP 8510
network analyzer proved futile. To measure such large values
of isolation is beyond the capability of such an instrument and
would have required a sensitive radio receiver, which was not
available.
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Fig. 5. Comparison of isolation predictions from this model with those from
commercial software package EM.

Instead, the predictions of the model were compared with
those produced with the aid of a recognized commercial
software package: Sonnet Corporation’s EM software run on
a Sun SparcStation. In analyzing coupling between probes in
a cavity the model described here is best suited to shott probe
lengths, because of using only a single expansion function to
approximate the current distribution along the probes. On the
other hand, EM is best suited to analyzing long probe lengths
with small gaps. Therefore, a compromise between these two
extremes was needed. As a compromise a probe length of
3.96 mm was chosen for the comparison. A value of 9.7 for
alumina was used as the relative dielectric constant, €,.. The
values produced by both EM and this program are plotted in
Fig.'5. As is apparent the agreement is quite close. This may
be a bit surprising considering that EM’s model is based on
the assumption that the ports are coaxial lines and are modeled
simply as voltages with fixed capacitors from the edges of the
signal conductor pattern to the surrounding metal box.

V. CONCLUSION

A computer model has been created for predicting the
isolation between RF ports of a class of MMIC packages that
approximate a rectangular cavity with shielded microstrip ports
at opposite ends. The model has been used to predict isolation
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using MathSoft’'s MATHCAD 4.0 software package on a 486
PC. From comparisons with a commercial software package,
the model appears to give reasonably accurate predictions of
isolation. Although it predicts coupling to cavity modes that
are TM to the axis of the ports, it does not predict coupling
to the TE modes, because of the simplified assumptions used
in deriving the model. The latter modes are ordinarily only
weakly excited, but their resonance frequencies are much
lower than those of the TM modes for conventional package
designs.

The actual isolation of the ports in a MMIC package
depends not only on coupling through the interior of the
package, as modeled here, but also on coupling via the ceramic
or plastic walls and on signal leakage around the exterior of
the package. Coupling through these latter paths may actually
be the dominant contributors to the total coupling between
ports. Certainly the isolation predicted by the model described
here is far beyond what should be required for good MMIC
performance.
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APPENDIX A

As stated in the body of the paper, the computations of
isolation were both shortened and made more accurate by the
conversion of the summations with respect to the index p into
closed-form expressions. In general, slowly converging infinite
series can often be transformed into more rapidly converging
series by the application of Poisson summation theory [9].
Sometimes one is fortunate to be able to replace an infinite
series by simply a closed-form expression. This happened to
be the case with the summations in question.

First, it was necessary to separate the fractions into sets
of partial fractions. This resulted in the decomposition of a
single series into the sum of two or three separate infinite
series. Equivalent closed-form expressions for these series,
as it happens, are listed in Gradshteyn and Ryzhik [10]. The
results of these transformations are presented below.

For matrix element a;;

o0 [cos (kos) — cos (ks)] sin (k,s) B
; (k2 — kg) (kg — k2)k.

1 { (c — s)[cos (kos) — 1]
2r2, k2

clcos (kgs) — cosh (rays)] sinh [rgy(c — 5)]
+ qu sinh (rqyc) }

where  guy = 4/k2 + k2

2, — k3. (AD)

and 7y, =

For matrix element a2

» [cos (kos) — cos (k.s)] sin (k.s)
N R [
1 {3[1 — cos (kos)]
2r2, k2
c[cos (kos) — cosh (14y8)] sinh (74 5)
sinh (rzyc)

} (A2)

with similar expressions for aa1, age, as;, and ass.
For matrix element a3
x .
(=) sm(kzzs)
(k3 — kg)k-

p=1
1 [esinh(ryys)
= — 3. A3
2r2, [ sinh (rzyc) s (A3)
For vector element b;

i sin (k,s)
p=1 (kg - k%)kz

1 ¢ sinh [rzy(c — s)]

22, {c sin h(rqyc) (A4

with similar expressions for matrix elements ag3 and as3 and
vector elements by and bs.
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