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A Compact Model for Predicting the Isolation of

Ports in a Closed Rectangular Microchip Package
Hilding M. Olson, LiJe A4ember, IEEE

Abstract— This paper presents the derivation of a compact

model for predicting the isolation between ports on opposite

sides of a microchip package such as would be used for MMIC

chips. The model consists of four current sources, two electric,

and two magnetic, representing the port currents and voltages

which excite the modes of a cavity formed by the interior of the
package. The contribution of each mode to the total electric field
is summed, and the average of the total tangential field along the
two probes that project into the cavity at the ports is set equal to
zero. The model, which runs on a PC, is used to compute data for
an actual package, and the data is compared with that produced

by a commercial electromagnetic analysis package running on a

work station.

I. INTRODUCTION

I N DESIGNING MICROWAVE packages for MMIC chips

it is very important to avoid signal contamination or signal

feedback at the RF ports. Hence, the signal isolation between

these ports must be kept high. Since it is advantageous to

be able to predict the degree of isolation for a given design,

a method of analyzing the coupling between ports of the

package is needed. This paper describes an analytic method

that satisfies this need and can be implemented on a PC,

These packages with their RF ports often closely resemble

rectangular cavities with probe excitations. Several authors

have analyzed such structures [1]–[3]. The model presented

here serves for the class of package that approximates a

rectangular cavity with shielded microstrip ports in opposite

sides. The microstrip conductor extends into the cavity as

a probe. Although the actual package configuration under

consideration may differ appreciably from a purely rectangular

cavity, this is a geometry that is reasonably simple to analyze

and therefore useful for estimating the package isolation. And

although the ports of the actual package may be different from

shielded microstrip, this geometry also lends itself to simplicity

of analysis. The geometry assumed for the analysis is shown

in Fig. 1.

The approach to the computation of isolation is to take

advantage of the equivalence principle [4] to replace the

electromagnetic fields in the apertures of the ports by fictitious

magnetic currents. These together with the electric currents

flowing on the probes are the sources for the EM field in the

cavity. With assumptions made for the spatial distribution of
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Fig. 1. Geometry of model.

these currents, the amplitudes of the cuwrents are found from

the constraint that the average value of the tangential electric

field along the probes must vanish.

An equation has been derived by Kisl iuk [5] for the electric

field ,inside a rectangular cavity in terms of sources within the

cavity. The actual distribution of electric field in the aperture

at the intersection of the shielded rnicrostrip ports and the

cavity is unknown. However, a reasonable approximation is

to assume that the distribution does not differ much from the

distribution of field over the cross section of a uniform infin-

itely long shielded microstrip line. Similarly, the distribution of

current on the microstrip conductor projecting into the cavity

is unknown. However, it is known to be higher at the edges of

the strip than in the center. A reasonable assumption for the

current distribution is a cosine-squared distribution across the

width of the conductor and sinusoidal along its length. The

latter assumption is widely used in cavity excitation problems

[6], [7].

The unknown quantities to be solved for are the volt-

age on the port #2 microstrip and the currents on the two

microstrip probes for an applied voltage of one volt on

the port #l microstrip. From these quantities one can then

determine the S-parameters and the two-port insertion and

return losses.
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II. DERIVATION OF ANALYTIC MODEL

The E-field within a rectangular cavity can be expressed in

terms of the cavity modes or eigenvectors and source currents

within the cavity as [5]

1’
— — z(;)

jwE
(1)

where kv, the eigenvalue of mode v, is given by k; =

k; + k; + h; = w~cp and k; = w2cp with

The resonant frequency of mode u is symbolized by WV and

the applied frequency by w.

and

J.Mu =
J

A7V(F’) . 1,(7) cZV, etc.
v

The final term in (1) arises when there are volume

(2)

current

densities in the cavity. For this model, in the absence of

volume currents, this term is neglected. The TEZ and TMZ

“electric” eigenvectors, Afu (r) and NV(r), respectively, are

given by

AZ. = + e x (ilzfA,Iv)
v

and

ivv=&x$x(iizfN”)
v

and WAfV and WNV are normalization constants with

fM.

= cos (kmr) cos (kgy) sin (kZz)

and

fl%

= sin (kZz) sin (kYy) cos (kZz)

Al.(F)

= # [-dZkv cos (kZa) sin (kVy)

+~gk. sin (kZZ) cos (kgy)] sin (kZz)

$. (F)

(3)

(4)

(5)

{

~ [-d.ZkZkZ cos (kZZ) sin (kgy)
——

Q

}

— dvkvkz sin (kZ$) cos (kvy)] sin (kZz) .

+ dz(k~ + kj) sin (kZZ) sin (kYy) cos (k.,z)

(6)

We can solve for the unknown current source magnitudes

by using (1) to find the z-component of the electric field along

the probes and setting it equal to zero. To find this component

we need the scalar products of the z-directed probe currents

with the iMV and NV eigenvectors. But since J14Uhas no z-

component we do not need to evaluate the integrals J.ILf or

JmK in the first term on the right of (l).

The normalization constant for the N eigenvector is

4&.k:

‘N” = (kj + k~)abc
for m,n=l,2,3. . .

andp = 0,1, 2,3..,

{

1 ifp=O

‘s= 2 ifp=l,2,3 ...”

Let the probe currents be

for c>,z’> c-s

ZZ = –dZIZ sin [ko(z’ – s)]

[
. 1+ OCOS2 (;)] ~(y’-hz)

(7)

for s>,z’>0. (8)

We have for the probe current coupling factors to the TM

modes

J.NV =
J

NV(P) (:,1 + .~~)Cw’
v’

= II J.NU1 + 12 J.NU2. (9)

Performing the integration yields

J.NVl = (–)$’Q sin (kyhl)Hl

JeNu2 = –Q sin (kvh2)H2 (lo)

where

2k’(k;-y) [Cos (k,s) - Cos (kzs)]Q= I&(ko – /cz)

and

()kzw
H& = sin (kzlP) sin ~

(

{%j+d=sin~
“(COS%Cot (kzlp)

k.: . T1
+— sm ~

2n w )1]
The magnetic currents flowing over the port aperture regions

have been derived as follows. The potential distribution for the

shielded microstrip geometry can be described by two infinite
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series, #o ($, y) for the air dielectric region and #l (x, y) for

the solid dielectric region [8], where

and

the summations being taken over odd values of n only.

The relations between the constants Cn and dn are de-

termined by the requirement that #o (z, d) = @l (z, d) be

satisfied independently by each of the terms of the series.

The value of either constant can be determined by solving the

integral equation for the charge density distribution over the

width of the strip conductor. For this analysis, the assumption

that the charge density is approximated by a cosine-squared

distribution results in the following set of constants

(4Coa~ - n2w3po)gn
cn=2

nk.W(4CL~ – nzwz) sinh (nk.d)

where

po =
X{( 9n ( )}nk. w

sin —
n 4a~ — n2w2

W,odd ) 2 -:

x ngn . (–)ntlaw
4a2 _ ~2w2 ‘In 2

modd

and
2 1

‘n = n~so s, coth (nk.d) – coth [nk. (b – d)]

and E, is the relative dielectric constant of the solid dielectric

region.

The electric field is then found from –6@0 and –~#1, and

the magnetic currents covering the lower region (region 1) of

the apertures become

9

= (-)~-1 ~ c~nka[dg sinh (nkaya) sin (nk~$~)
n=l,3

+ iiZ cosh (nk.y.) cos (nkaza)] (11)

and those covering the upper region (region O) become

~mop .
— . (–)~”’dz x *

v@ P

= (-) P-l ~ &

n=l,3

“[

dv sinh [nka(y. – ha)] sin (nkaza)

+ d. cosh [nka(ya – ha)] cos (nkaza) 1

(12)

with d~ = c~ {sinh (nkad)/ sinh [nka(d– ha)]} where z~ and

y. are the coordinates of the aperture and u is 1 for port 1

(.z = c) and 2 for port 2 (z= O). These transform into z and

y, the coordinates of the cavity, as X. = (–)~(z – lP), Y. =

y–hfl+d.

83

The “mag~etic” eigenvector, F., is given by ~v =

l/(kU)~ x Nv whence

~. = ~ [d$kV sin (kZZ) cos (k~,y) cos (kZz)

~ dvkx cos (kZ$) sin (kVTJ) cos (k,,z)]. (13)

The aperture current coupling factors then become

/

hw+b. –d

+

}

i“(~) . .j~op(~) dz’ dy’.
hp

Substituting from (11), (12), and (13) and performing the

integrations yields

9

Jm~u 1 = ~ Jm~u In where J,.FV In

n=l,3

()

= (-)’+ lA1.B. sin (kZll) cos *

9

JmFV2 = ~ JmFu 2. where J,.F.2.

n=l,3

()

,kZa.
= A2nBn sin (kz12) cos ~ (14)

hd where

AW~ = sin [kv(hW - d)]

+ {sinh (nkad) sin [kU(hP - d + IIa)]

– sinh (nk~b~) sin (kVhW)}/

{sinh [nka(ba - d)]}

and
2n2k~(k~ – k~)cn

‘n = kV[k~ – n2k~][n2k~ + kj].

There are four coefficients to be evaluated: 11, 12, Vl, and

V2. We specify V1 to be 1 volt, leaving three undetermined

coefficients. Three moment equations involving the tangential

electric field on the probes need to be established to provide

a solution for the three unknowns. For the moment equations

we choose the following testing functions

fl(z, y, z) =ii(z-l, )ti(y- h,)u(.z - C+s)

~z($, y, z)= d(r - 12) 8(Y - h2)[l -- U(Z - ass)]

f3(z, y, z) = 6(z - 12) 6(Y - hz)[u(;z - ass) - U(Z - .s)]

where as is a suitable fraction. Applying these to (1) for the

z-component of electric field will provide three expressions

for the tangential field integrated along the input and output

microstrip probes, which must vanish. Since the only functions

of position will be the eigenfunctions, these are the only
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functions to be integrated. The eigenfunction integrals are

readily evaluated to yield

~VZ~ = WNU
/

NV.(Z, y, ,z)~l(z, y, z) dV
v

= (-)’ & sin (kZII) sin (kyhI) sin (kZs)
z

~Uz2 = WNV
/

~..(z, V, z)~XZ> Y, Z) dv
v

.— * sin (kZIZ) sin (kYh,2) sin (kZs)
z

~VZ3 = W’NW
/

NV=($, g, z) f3(%, y, 2) W
v

—
% sin (kZ12) sin (kVh2)

[

sin (kZs)
—

1– sin (kza~s) “
(16)

z

The three equations that result from this process are

where the elements of the A matrix are given by

v

alz = x-KVlCVJeNu2NVz1

u

azl = x-Kvkv JeNV 1NVZ2

V

azz = z-ttVkVJeNV2Nvz2

v

v

a32 = ~ EvkVJ.Nu2~Vz3

(17)

u

and the elements of the B vector are given by

bl = ~ K,VJmFV1~Vzl

v

b2 = ~ Kv JmFu 1~vz2

v

b3 = ~ tCVJmFV1rVz3.

v

The total probe current flowing into the input probe is found

by integrating the surface current density II over the width of

the probe. This yields lT = llWJ[l + (0/2)] sin (kos). Finally,

the S-parameters in terms of lT and V2 and isolation become

and

S21=
2V2

1 + zo~I~

Isolation = –20 log S21. (18)

These equations were derived under the assumption that the

ports are in opposite sides of the cavity and that the probes are

terminated in open circuits. If, instead, the ports are in adjacent

sides of the cavity, the coupling between the ports would still

be via the TM cavity modes and a procedure similar to that

above could be used to compute the coupling. If the probes

are terminated in their characteristic impedance, considering

them to be transmission lines, there will be no current reflected

from the tips of the probes. In this case the currents can be

assumed to be uniform in magnitude along the probes. Taking

this into account, (8) can be accordingly altered, and (10) can

be replaced by somewhat different coupling factors for the

electric currents.

III. CAVITY ISOLATION COMPUTATIONS

The analytical method described here has been used to

predict the isolation between ports 1 and 2 for a specific design

of cavity and shielded microstrip ports. The cavity dimensions

used for the computations are the following

a = $).652 mm

b = 0.889 mm

c = 14.859 mm,

The following are the aperture dimensions used

11 =12 = 3.175mm

d = h = 0.254mm

a. = 1.321mm

b. =0.889mm

w =0.229 mm.

The microstrip conductors extend into the cavity as probes for

a distance of 1.016 mm.

The computations were programmed into MathSoft’s

MATHCAD software on a 486 PC. Each computation at a

single frequency took about four minutes. The summations

over the mode index v, which comprises the three indexes

m, n, and p, involve triple summations. For the matrix

elements representing the effect of a particular source on

the electric field at the other end of the cavity, e.g., a12, the

series summed over p are alternating. They produce very small

numbers, the computation of which requires a large number

of terms for accuracy and is plagued by round-off errors.

Fortunately these summations can be replaced with closed-

form expressions by the application of partial fractions and

Poisson summation theory [9] or directly from tabulated series

[10]. Appendix A presents the results of these replacements.
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Fig.2. Redicted frequency-dependence ofisolation foraprototype MMIC
package.

Fig. 3. Dependence of isolation on probe length and frequency.

Fig.2 displays the frequency-dependence of the isolation

computed with the model for the dimensions given above over

a wide range of frequency. The summations were truncated

when m and n reached 50 and 25, respectively. Note that the

isolation slumps off to near zero at about 170 GHz, which is

the lowest of the resonance frequencies for the TM modes.

Figs. 3 and 4 are surface plots, which show how the

frequency-dependence of isolation varies with probe length,

s, and with aperture width, aa, respectively.

IV. COMPARISON OF COMPUTED DATA

WITH DATA FROM OTHER SOURCES

Attempts were made to confirm the predictions of the model

with sample cavities that simulated actual packages. These

consisted of two coaxial lines with SMA connectors soldered

into opposite walls of a short length of X-band waveguide

shofi-circuited at both ends. The attempts to measure the

isolation between input and output lines with a HP 8510

network analyzer proved futile. To measure such large values

of isolation is beyond the capability of such an instrument and

would have required a sensitive radio receiver, which was not

available.

OLATION
dB

IN Gliz

Fig. 4. Dependence of isolation on aperture width and frequency.
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Fig. 5. Comparison of isolation predictions from thk model with those from

commercial software package EM.

Instead, the predictions of the model were compared with

those produced with the aid of a recognized commercial

software package: Sonnet Corporation’s EM software run on

a Sun SparcStation. In analyzing coupling between probes in

a cavity the model described here is best suited to short probe

lengths, because of using only a single expansion function to

approximate the current distribution alcmg the probes. On the

other hand, EM is best suited to analyzing long probe lengths

with small gaps. Therefore, a compromise between these two

extremes was needed. As a compromise a probe length of

3.96 mm was chosen for the comparison. A value of 9.7 for

alumina was used as the relative dielectric constant, e,. The

values produced by both EM and this program are plotted in

Fig. 5. As is apparent the agreement is quite close. This may

be a bit surprising considering that EIvI’s model is based on

the assumption that the ports are coaxial lines and are modeled

simply as voltages with fixed capacitom from the edges of the

signal conductor pattern to the surrounding metal box.

V. CONCLUSION(

A computer model has been created for predicting the

isolation between RF ports of a class clf MMIC packages that

approximate a rectangular cavity with shielded microstrip ports

at opposite ends. The model has been used to predict isolation
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using MathSoft’s MATHCAD 4.0 software package on a 486

PC. From comparisons with a commercial software package,

the model appears to give reasonably accurate predictions of

isolation. Although it predicts coupling to cavity modes that

are TM to the axis of the ports, it does not predict coupling

to the TE modes, because of the simplified assumptions used

in deriving the model. The latter modes are ordinarily only

weakly excited, but their resonance frequencies are much

lower than those of the TM modes for conventional package

designs.

The actual isolation of the ports in a MMIC package

depends not only on coupling through the interior of the

package, as modeled here, but also on coupling via the ceramic

or plastic walls and on signal leakage around the exterior of

the package. Coupling through these latter paths may actually

be the dominant contributors to the total coupling between

ports. Certainly the isolation predicted by the model described

here is far beyond what should be required for good MMIC

performance.
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APPENDIX A

As stated in the body of the paper, the computations of

isolation were both shortened and made more accurate by the

conversion of the summations with respect to the index p into

closed-form expressions. In general, slowly converging infinite

series can often be transformed into more rapidly converging

series by the application of Poisson summation theory [9].

Sometimes one is fortunate to be able to replace an infinite

series by simply a closed-form expression. This happened to

be the case with the summations in question.

First, it was necessary to separate the fractions into sets

of partial fractions. This resulted in the decomposition of a

single series into the sum of two or three separate infinite

series. Equivalent closed-form expressions for these series,

as it happens, are listed in Gradshteyn and Ryzhik [10]. The

results of these transformations are presented below.

For matrix element all

m [cos (k~s) - cos (kZ.s)] sin (kZs) =

X’ (k; - k;)(k: - k:)kz
p=l

{

1 (c - S)[cos (k,s) - 1]

2T;Y k;

+ CICOS (lcos) – cosh (T-ZUS)] sinh [rzv(c – s)]

q~v sinh (Tzvc) }

where qzy =
w

and ‘z, = m
(Al)

For matrix element alz

~ ~_)P [cos (kos) - cos (k.s)] sin (k s)

(k; - k;)(k: - k;)kz z =
p=l

1

{

S[l – Cos (k@)]

2r:y k;

+ CICOS (kos) – cosh (rZYs)] sinh (rXVs)

}

(A2)
sinh (rZvc)

with similar expressions for azl, azz, asl, and a32.

For matrix element a13

1

[

c sinh (TZVS) _ s.—
2r;g 1sinh (rnV c) “

For vector element 131

?
sin (kZs)

(k; - k;)kz
p=l

(A3)

1

–{

c _ s _ c sinh [rZy(c – s)]—.
2r& }

(A4)
sin h(rZVc)

with similar expressions for matrix elements a23 and a33 and

vector elements b2 and b3.
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